
Improving Security By Enhancing Cloud Assisted Virtualized Android….. Ananthraj K

384

International Journal of Technology and Engineering System (IJTES)
 Vol 7. No.4 2015 Pp. 384-390
©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

IMPROVING SECURITY BY ENHANCING CLOUD

ASSISTED VIRTUALIZED ANDROID APPLICATION
SPECIFIC FIREWALL

ANANTHRAJ K 1 ,

PG SCHOLAR, DEPT OF CSE
Surya group of institutions, vikkravandi
ananthrajkrt@gmail.com , 9994034865.

ABSTRACT

The no of users using Smartphone has increased enormously. so security is the major challenge here to protect user from
malicious software accessing the user’s privacy information. Since users may not be clearly aware of the malicious Apps
existing in Android market so its important provide security for users Data. This paper proposes and evaluates an
enhanced security model and architecture, By enhancing virtualized application specific firewalls managed by the
cloud. The Proposed solution can be considered as an Android Firewall Application but enhanced with some extra
functionality. Key components used by the solution include VPN technologies like the Point to Point Tunnelling Protocol
(PPTP) and the Android Cloud to Device Messaging Framework (C2DM). Our solution is based on the cloud keeping
track of millions of applications and their reputation (good, bad, or unknown) and comparing traffic flows of
applications with a list of known malicious IP servers. We describe a prototype implementation and evaluate our
solution.
Keywords: Android Market; Security; Mobility; Cloud Computing.

I . INTRODUCTION

The number of smart mobile devices has increased
rapidly, due to users desire to have Internet access
anywhere and at any time. Another driving force has been
the steep decrease in cost, for smart model devices. There
has also been a steep decrease in cost, of mobile device
Internet access. Millions of users are using Android
applications, on a daily basis. There have been over ten
billion application downloads, from the Android market
in 2010 [2]. More than 250 000 applications have been
downloaded with malware [3][4]. There is a steep
increase in the number of Android users who have been
infected with malware. This increase in malware trend is
expected to continue. This paper is an attempt to reverse
this increase in malware trend.
The Android application market has not been designed to
properly reject newly uploaded applications, which
contain malware. Google removed 17 applications
containing malware in March 2011 [5]. However these
malware applications were not removed until long after
the malware applications had been downloaded thousands
or millions of times. So the removing of malware
applications from the Android market after they are
downloaded will, in general,

always be too late. Another problem is that even if the
Android market had been designed to reject uploaded
malware applications, this is simply not possible. It is
impossible to always identify a malware application,
after analyzing only the application. Sometimes, the
application can’t be identified as malware until after it is
run on users’ Android devices, in a real world scenario.
This paper is an attempt to allow potential malware
applications to run, in a real world scenario, but in a
tightly controlled environment. In this paper, the tight
controls are only based on the potential malware
application’s IP traffic. In addition to having these tight
IP controls, this paper provides a solution, where anti-
malware providers can also obtain detailed IP traffic
statistics, on any and all potential malware applications.
This paper also addresses the following issue. There are
many applications which are not malware. However, if
these non-malware applications are ot designed with the
proper security in mind, malware applications can use
these non-malware applications in improper ways, to
give malware applications additional access. For
example, a malware application which is not granted
Internet access, can obtain Internet access via a non-
malware application (which has not been implemented
properly). This paper also addresses this latter issue.
Nowadays, anyone can implement Android applications

Improving Security By Enhancing Cloud Assisted Virtualized Android….. Ananthraj K

385

without having strong programming skills. So the cost of
developing Android applications is very low. Most
companies and developers do not have the proper security
skills, to create secure Android applications. Therefore,
the developers sometimes do not consider all security
issues or more often, they are simply not skilled enough
to be aware of all vulnerabilities.
It is the developer who specifies which permissions the
application requires. Then, when the user installs the
application, the user is presented with a list of the
developer’s requested permissions. The user must grant
all permissions, otherwise, the application will not install.
The allowed permissions cannot be changed at run time.
Once the application is installed, it may obtain or give
other applications sensitive data. Applications can also
obtain sensitive data, by interacting with the user. The
sensitive data might be shared between a normal
application and a malware application. Then the malware
application may transmit that sensitive data via the
Internet directly. Again, if the malware application does
not have direct access to the Internet, if may access the
Internet indirectly, via a normal application. Malware
applications and even normal applications may
communicate sensitive information via Internet servers or
via SMS/MMS without notifying the user.
Facebook, Twitter, and Google Apps (Calendar, Contacts,
and Picasa) are a few examples, of non-malware
applications which transmit private data as clear text [6],
without the knowledge of most users.
Sending sensitive data without encryption over networks
triggers a number of critical issues. When a smartphone
establishes an Internet connection via WLAN, it is often
possible to capture all traffic, including user IDs and
passwords. Even if the WLAN is encrypted, with the most
recent WLAN IEEE 802.11i WPA2 security, there is a
serious vulnerability (Hole196). Our solution also
addresses this issue.
Existing work is, to prevent leaking personal data and
react fast, it suggest a framework, which aims to provide
secure connections by normal and even malicious
applications. The proposed paper to control these
malicious software without even entering the users device
either by deleting the application with high vulnerability
or block the app to prevent user’s device by block the app
on a private server(control group) who actively
monitoring the cloud server to detect the malware
application which may transmit that sensitive data via the
internet directly.
Without notifying the user.
The rest of the paper is organized the following way:
Section II surveys related work, while Section III gives
further background, while Section IV presents the
proposed solution. Section V describes evaluations and
experiments performed, while results, conclusions and
future are indicated in Section VI.

II . RELATED WORK

There are lots of research projects going on to prevent
leaking of personal data and malicious apps solutions for
Android OS. One of the most commonly used approaches
is a security-based permission model.
Tang et al. [7] highlights that Android Security System
and treatment are too weak and proposed ASESD to
prevent malware. Ongtang et al. [8] proposes the Saint
framework, which grants permissions policies to
overcome Android security weaknesses. Rassameeroj et
al. [8] demonstrated detecting malware by distinguishing
APKs’ permission request from others, based on their
functionality. Barrera et al. [10] overviewed iOS,
Android, BlackBerry, and Symbian security frameworks
and classified third-party-application installation models.
However, obviously the best and easiest solution is to
prevent spreading the malicious applications from the
Google Android Market rather than restricting
permissions and defining new different permission levels
for all applications on the phone. According to [10], the
Google Android Market should be able to check security
vulnerabilities and those authors even want Google to
have that responsibility. Google have removed dangerous
applications from their markets and even remotely from
phones. Remote app uninstallation, also called a kill
switch [12]. Kill switches let the vendor remotely
uninstall (or deactivate) an application on a user’s
smartphone. Kill Switch and removing applications from
market are solutions but these solutions often performed
too late. Our solution is designed to take action much
earlier than these solutions.

III BACKGROUND

A. Android OS
Android is a software stack (see fig. 1), which includes an
operating system, middle-ware and core applications.

Figure 1. Overview of the Android OS

Android architecture consists of four different layers.
The first layer is the Linux Kernel, the second layer is
composed of Libraries and the Run Time Environment,

Improving Security By Enhancing Cloud Assisted Virtualized Android….. Ananthraj K

386

the third layer is the Application Framework, and finally
the Application layer has been placed on the top.
Android applications are developed with the java
programming language. All applications must be digitally
signed with a certificate. A vendor can sign their
application updates with the same certificate. A vendor
can also sign multiple applications with the same
certificate. All applications and updates with the same
certificate are considered as the same application and
assigned the same locally unique User-ID. Applications
with different certificates are assigned different and
unique User-IDs. Each application also runs in its own
Dalvik VM which is in a separate process and by default,
can access only its own application files. Therefore
applications with different User-IDs are isolated from
each other and this structure is called a kernel-level
Application Sandbox. With the default settings, just a few
core applications can run with root level permissions.
Each application consists of four components; Activities,
Services Broadcast receives and Content Providers. All
components except Content Provider provide
communications between applications. Access to these
communication features are allowed, based on the
application’s requested and granted permissions by the
Intent Message Passing System [13][14][15]. Most
Android built-in services have been implemented as
components, for example; Phone Book and device-based
functions. Inter-Process Communication (IPC)
mechanisms provide interactions between these
components. Therefore an installed malicious application
can use built-in services and expose private data easily
[16].
The developer requests various permissions, by including
tags in the application’s Manifest.xml file. This file
contains all critical information such as unique ID,
protected parts, and access permissions. For example, if
an application has the READ_PHONE_STATE and
INTERNET permissions, that app can be used to get
phone numbers, IMEI, user location etc. from the phone
and can transmit the information to any Internet server
[7]. Any application can also download and/or upload any
kind of file in the background with appropriate
permissions.
To protect an application from other applications, the
permission label policy model is also defined in the
applications manifest file.
The Android Security Policy is divided into groups;
“Permission Granting Policy” and “Interaction Policy”.
Protection Level-based Policy, Signature–based Policy
and Application Configuration-based Policy are found
during installation in the “Permission Granting Policy”.
Interaction Policy covers four different policies as well,
which includes the following: 1) Permission based Access
Control Policy, 2) Signature based Policy, 3) Application
Configuration based Policy, and 4) Context-based Policy,
see fig. 2.
Interaction Policies are defined at runtime, for example
Signature-based Policy can be used to restrict the

component applications. The implementation is based on
the applications’ signatures, which includes default-allow
and default-deny modes [13].

B. Android Cloud to Device Messaging Framework
The Android Cloud to Device Messaging Framework
(C2DM) is a lightweight communication mechanism [17],
which is used between application servers and their
mobile Android applications, via the Google Cloud. The
requirements follow: The Android OS must be at least
version 2.2. The Android application must be installed via
the Android market and the Android device must be
logged into at least one Google account.
Pervasive and mobile computing consists of a few major
challenges. One of the major challenges is battery life.
C2DM is an elegant solution to reduce battery usage.
Even if there are several different applications which wish
to maintain communication with their own application
servers, C2DM allows all applications to initially
communicate over the same single shared TCP
connection.
The application servers can initiate communication (push
method instead of pull) with their own mobile
applications. Then data can be exchanged, updated and/or
queued for installation. The C2DM handles queuing of
messages and delivery to its client Android mobile
application. Therefore, C2DM is the most efficient way
for the application server and its client Android mobile
application to communicate. This is also the most
efficient way to notify the user of new application
updates. It is still the user who must approve or grant the
application update Figure 2 illustrates the C2DM service
mechanism. The structure consists of three components,
which are Google C2DM servers, Application Server and
Android applications. The Application Server sends
messages to the Google C2DM servers with an HTTP
POST, whenever the server wants to communicate with
its Android application.

Figure 2. The Android Cloud To Device Messaging
Framework (C2DM)Overview
The application must register with the C2DM servers
before this C2DM service becomes active. Registration is
performed by sending an Intent-register (com.google.
android.c2dm.intent.REGISTER) with two parameters:

• Sender ID which is the role-based account
authorized to identify an Android application before
sending message. Developers set up the sender ID e.g.

Improving Security By Enhancing Cloud Assisted Virtualized Android….. Ananthraj K

387

myApp@gmail.com
• Application ID which is used for assuring that the

messages are targeted to the correct application.
Application ID is defined by the package name, which is
found in the manifest.xml file.
After a successful registration, the C2DM server sends a
registration ID to the Android application by broadcasting
a REGISTRATION Intent message. The application
stores this ID for later use. Finally, the application sends
the registration ID to its own application server. This is
also the most efficient way to notify the user of new
application updates. It is still the user who must approve
or grant the application update. The third -party
application server is authorized to send messages to its
Android application after it receives the registration ID.
The application server issues an HTTP POST request
https://android.apis.google.com/c2dm/send
in order to send messages to its client application. The
server sends the following parameters: registration_id,
collapse_key, data.<key>, delay_ while_ idle ,and
Authorization:GoogleLoginauth=[AUTH_TOKEN]
When a user has installed an application that supports
C2DM, they will be informed by the Android Market that
the application supports C2DM. The user will then be
requested to grant the application, including the C2DM
rights Since the Control monitoring the information about
ht malicious App that exist in Market as unknown, may
also communicate via C2DM servers. Its secured protocol
that’s been working by Point to Point tunnelling protocol
to transfer the message between the user’s Device and
Application server.

EXAMPLE OF THE ENHANCED
WALLDORID APPLICATION
SERVER TABLE CONTENT

Certifica
te ID Vendor

Applicati
on

Numbe
r of Reputati

on Status

Installs

67e2… Skype Skype
1,667,22

4
Known-

Good

Direct
Intern
et Ok

78a2… Unknown Game_X 672 Unknown
See

Below

78a2… Unknown Game_Y 52 Unknown
See

Below

8c22.. SocialNet
The

SocialNet 8,767
Known-

Bad

Block
Intern

et

729b.. Games4Y Angry 578,913 Known- Direct

ou Birds Good Intern
et Ok

Table :1
Control group server monitoring table content

Cert
6ific
ate
id

Vulnera
bility

status Acti
on

Reputation

67e2
…

High
risky

Possiblit
y to
affect
system

Delte
App

Not
recommended

Table :2

IV. SOLUTION ARCHITECTURE

This section presents the architecture of our application-
based security model, which is called WallDroid which is
an existing model and the proposed solution is concerned
with enhancing this walldroid by adding additional server
to existing architecture to strictly block the higly
malicious content to not entering the user’s device at least
once. This section presents the architecture of our
application-based security model, which is called
WallDroid. The aim of WallDroid is to detect malicious
activity at a very early stage and then to quickly prevent
any future malicious activity.

The WallDroid architecture consists of three main
components:

1) VPN Server,
2) WallDroid Application Server, and
3) Control group(to reduce malicious software)
4) WallDroid app (running on the device).

The WallDroid app can be considered as an Android
Firewall Application but with some extra functionality.
Before presenting more details concerning our solution,
we will prevent various anti-malware strategies, which we
believe are inferior, to our solution. Note that the
following are general strategies, which are used on
various clients (e.g. Microsoft, Linux, and Mac OS).
Some anti-malware solutions require the user to decide
what to do, for applications which are not clearly safe and
not clearly malware. However, the user is often not in the
best position to make a decision. We therefore propose
that the user choose a security policy. There could be a
large number of different security policies, which the user
could subscribe to. However, we will greatly simplify the
security policy discussion and just mention a few
examples. The user, for example, could choose one of the

Improving Security By Enhancing Cloud Assisted Virtualized Android….. Ananthraj K

388

following security policies:
 High Security
 Medium Security
 Low Security

One anti-malware strategy is to grant permission to all
Unknown applications. Another anti-malware strategy is
to deny permission to all Unknown applications. The
problem with these strategies is that these are far too
general for decision making to choose the action which
may not clearly known whether it could it affect or not.
Our solution's first component is, as mentioned, an
ordinary VPN server and include secured communication
system to efficiently communicate with the server. The
second component is, also as mentioned above, the
WallDroid Application Server maintaining a table of
applications, including their status and other statistics. A
simplified version of the WallDroid Application Server
table is available in table 1. Since vendors can use the
same certificate for multiple applications and updates, we
must first find a way to create our own unique application
ID. Our strategy is to run the application or update
through a hash function (ex: MD5). Then our unique
identifier is a combination of the certificate and hash
value. The second column (Hash Result) contains the
results of running the application install file through a
cryptographic hash function (ex: MD5). We are not
specifying which hash function should be used. Therefore
we are using very simply hash results, in order to simplify
the table.
In the above, we have three classifications of Android
applications.

1) “The Good” - We have applications which are
known to be good. For these applications, we grant
permission for these good applications to have direct
Internet access.

2) “The Bad” - We have applications which are
known to be malicious (bad). For these applications, we
deny permission for these bad applications to have direct
Internet access. We also attempt to have these uninstalled.

3) “The Unknown” - The very interesting case is for
applications which are not known to be good and not
known to be bad. These unknown applications are the
focus of our solution.

The third component of our proposed solution is the
WallDroid application. Part of the WallDroid application
is a cloud based database service. It is this database
service which contains the list of all applications and their
reputations (good, bad and unknown) which WallDroid
has ever encountered, on any user’s Android. When
WallDroid is installed, it sends the list of installed
application hash values to the cloud (based on a subset of
the applications’ extracted files). It is then the cloud that
returns the reputation of each installed application. If
WallDroid detects any application-ID, which is not in the
cloud’s database service, it tags that application as
Unknown. According to the reputation tab, WallDroid
treats each application based on the given label as

illustrated in the following table. Table 2 shows an
example. WallDroid allows the Known-Good App to
access Internet and connect its server directly without any
limitation. It blocks the Known-Bad Apps’ Internet-
traffic, by restricting permissions of that malicious app.
When WallDroid determines Enhanced walldroid
application improve connection is established via VPN
server, WallDroid System are also able to observe the
Unknown app’s data traffic to determine whether it is
malicious app or the app is sending any personal data as a
clear text. Once if WallDroid System figures out that the
Unknown app is malicious or it does not care about
network security, VPN server blocks the data traffic and
informs the WallDroidAppl n server.

Fig
3: Proposed Solution Architecture along with control
Group.

The Control Group in our proposed solution is added to
improve the security of the user mobile device.The
control contains a server which maintain information
about the malicious apps exist in android
market.walldroid app could block the traffic of this
malicious app by not sending any personal data as clear
text once if walldroid system figures out that the unknown
app is malicious or it does not care about network
security, VPN server blocks the data traffic and informs
the walldroid Application server.But here the malicious
app is at least entered as good may connect with another
good may able behave as malicious app. So the control
group maintains history both app behaviour to reduce this
kind of vulnerability. Also the control group searching the
market to see any other app belong to same App ID with
this kind of behaviour so it block all the app that seems
with this kind of risks.it block the app totally without
entering user’s device byt holding that as malicious app in
its own server. It also maintains prehiatory other user
specified information about this app and compare this app
with that table which could also reduce risk
vulnerability.The control group presented in this system
to improve security performance of the user device those
accessing cloud server for their personal user. Its cloud
providers responsibility to protect user data by not
accessing by any another malicious app.The control
group also scanning the entire Android market to trace the

Improving Security By Enhancing Cloud Assisted Virtualized Android….. Ananthraj K

389

app with malicious behaviour further to reduce apps by
delting them permanently which propose high risk to user
device. Thus by Enhancing the performance of cloud
assisted app by strengthening the firewall will make the
user to interact with cloud service by without having the
fear of that they could caught by malicious app. Also we
are regularly updating the server .so vulnerability future
attack is also greatly reducing due to this

 EVALUATION

We based on solution on a rooted Android 2.2 OS. The
reason is the following. The market share for Android
phones, prior to 2.2, is extremely small. Our solutio n was
tested on Android 2.2. However, future Android OS rele
ases also support our solution, which requires NetFilter.
Like all Linux distributions, the Android phone comes
standard with a PPTP VPN client, which is he one we
used.. We used a standard PPTP server on both +Linux
Ubuntu Server 11.10 and Windows 2008 R2 Server.
Also, the Android phone comes standard with NetFilter
(IPTables). This enables the redirection of certain flows
via the VPN Server. The Android OS is quite uniq ue, in
that each application has its own userid. We have taken
advantage of that feature in the following way. What we
hav e done, which is unique, is to use the application’s
unique userid. We have gathered all applications’ unique
IDs which are installed on our Android OS [18][19] and
store the IDs in a HashMap which is called
ApplicationIdMap.
The map tree holds the uniqueID as keyword and other
information, e.g. Tag i nformation, as a value. When an
application is requested to access Internet, we have
iterated the ApplicationIdMap with the u nique ID and we
configure NetFilter based on the Tag of that application if
the Tag is Unknown. Running a script does the
configuration, so that only that apps’ traffic is sent via the
VPN Server to the WallDroid Application Server. By
doing this we are able to capture and observe the
applications’ traffic at the VPN Server and able to decide
whether an app is malicio us or not. When we make a
decision whether an app is malicious or not we inform the
WallDroid Application Server using a push method. Once
we have decided that it is a bad app we immediately block
the traffic and the WallDroid app is updated (like a
firewall) via the C2DM Server. Implemen ting the C2DM
mechanism for an application has been des cribed clearly
by [16]. If we decided that the app is good that app can,
after an update, connect to the Internet directly. On the
other hand, if an installed apps’ tag is Known-Good it is
allowed to access Internet directly. To the best of our
knowled ge, no one in the industry or academia has so far
come up with this approach.

AP
P
ID

Action Tag Status Report

67
30

Blocked Unknown
app x

Risky Denied

72
66

Permitted Adobe
reader

Safe Permitted

Table :3

VI. CONCLUSION AND FUTURE WORK

Existing systems are too general. We therefore provide an
ApplicationID-based solution for en hancing security
which is a very fast mechanism in terms of actions being
taken before any data is leaked. As a result of our work,
we have implemented a prototype, to demonstrate the
features of our proposed solution, see fig. 5. Our design
and prototype ha s shown, that by taking advantage of the
unique Android OS feature (unique user-id per
application), that we can forward the live IP flows via a
VPN, for cloud based analysis. Al so, our design allows
us to send just a small subset of all the same application’s
traffic to the cloud. Last, our design also allows us to
monitor statistics, on an application-by-application basis.
Our future plans are to create an industrial strength
version of our solution and to perform a pilot study with a
larger study group. We are also planning to build up a
controlled group of Android emulators. Then it will be
easy for us to quickly analyze a wide variety of
applications, including known malware.

REFERENCE:

[1] Caner kilinic, Todd Booth, and Karl Anderson.
“Walldroid Cloud Assisted Virtualized Application
Specific Firewalls for the Android OS” pervasive and
Moblie computing Laboratory,
[2] 2012 IEEE 11th International Conference on Trust,
Security and privacy in Computing and Communications
[3] E. Chu. 10 Billion Android Market downloads and
counting, Official Google Blog. Available:
http://googlemobile.blogspot.com/2011/12/10-billion-
android-market-downloads-and.html. Accessed on May
13, 2012.
[4] F-Secure. New Century in Mobile Malware.
Available:
http://www.fsecure.com/weblog/archives/00000864.html.
Accessed on May 13, 2012.
[5] R. Siciliano. Android Apps Infected with a Virus.
Available: http://www.blogtalkradio.com/robert-
siciliano/blog/2011/04/02/android-apps-infected-with-a-
virus. Accessed on May 13, 2012.
[6] N. Olivarez-Giles. Google removes 21 apps infected
with malware from its Android Market, report says.
http://latimesblogs.latimes.com/technology/2011/03/googl
e-removes-apps-android-marketplace-malware.html.
Accessed on May 13, 2012.

Improving Security By Enhancing Cloud Assisted Virtualized Android….. Ananthraj K

390

[7] R. McGarvey. Look Out: Your Android Is Leaking.
Available:
http://www.esecurityplanet.com/trends/article.php/393751
6/Look-Out-Your-Android-Is-Leaking.htm. Accessed on
May 13, 2012.
[8] W. Tang, G. Jin, J. He, and X. Jiang. Extending
Android Security Enforcement with A Security Distance
Model. Proceedings of International Conference on
Internet Technology and Applications (iTAP 2011),
Wuhan, China, August 2011
[9] M. Ongtang, S. McLaughlin, W. Enck, and P.
McDaniel. Semantically Rich Application-Centric
Security in Android, Proceedings of Annual Computer
Security Applications Conference (ACSAC '09),
Honolulu, HI, USA, December 2009
[10] I. Rassameeroj and Y. Tanahashi. Various
Approaches in Analyzing Android Applications with its
Permission-Based Security Models.
[11] Proceedings of 2011 IEEE International
Conference on Electro/ Information Technology (EIT),
Mankato, MN, USA, May 2011
[12] D. Barrera and P. Van Oorschot. Secure
Software Installation on Smartphones, IEEE Security &
Privacy 9(3), pp. 42-48, May-June 2011
[13] P. McDaniel and W. Enck. Not So Great
Expectation, Why Application Market Haven’t Failed the
Security. IEEE Security & Privacy 8(5), pp. 76-78,
October 2010
[14] G. Keizer. Google throws ’kill switch’ on
Android phone. Computer Worlds 7, March 2011.
Avaliable http://www.computerworld.com/s/
article/9213641/Google_throws_kill_switch_on_Android
_phones
[15] K. H. Khan and M. N. Tahir. Android Security,

A survey. So far so good. Available:
http://imsciences.edu.pk/serg/2010/07/android-security-a-
survey-so-far-so-good. Accessed on May 13, 2012.
[16] Google. What is Android?
http://developer.android.com/guide/basics/what-is-
android.html, Accessed on May 13, 2012.
[17] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android Security. IEEE Security and &
Privacy 7(1), pp. 50-57, January-February 2009
[18] E. Chin, A. Porter Felt, K. Greenwood, and D.
Wagner. Analyzing inter-application communication in
Android. Proceedings of the 9th international conference
on Mobile systems, applications, and services (MobiSys
'11), Washington D.C., USA, June-July 2011
[19] Google. Android Cloud to Device Messaging
Framework. Available:
http://code.google.com/android/c2dm, Accessed on May
13, 2012.
[20] http://code.google.com/p/droidwall, Accessed on
May 13, 2012.
[21] http://code.google.com/p/droidwall/source/brows

e/trunk/src/com/google code/droidwall/Api.java?r=148,
Accessed on May 13, 2012.
[22] NIMO: Nordic Interaction and Mobility
Research Platform. http://www.nimoproject.org,
Accessed on May 13, 2012.

